カテゴリー別アーカイブ: 説明文

前回に関連して片刃と両刃

片刃と両刃の違いについてもよく取り沙汰されます。曰く、両刃は真っ直ぐ切り割るのに適するが、片刃は(右利き用の場合)裏の方、つまり左に向かって切り進んでしまう。しかし斬れ味は鋭いので薄く・細く切るのには向いている。等です。 上記に対して之また良く出る反論が、角度が同一なら片刃も両刃も切れ味は一緒だ、というものです。

しかし、これには切断対象への外力の掛かり方がまず違ってきます。例えば、人参や丸の魚などを中央から両断するような場合、V型の刃を垂直に入れると、左右の切断面に均等に押す力が掛かり、同時に切断面の反対側から押し返される事になります。それは切断面から先にどれだけの体積・質量が連なっているかで大きく変わりますが、基本的には刃によって押される力よりは弱いでしょう。しかし食材の食感や風味を劣化させかねないのは間違いないと思います。 対して、片刃で同様に切るならば、グリップや親指による裏の押さえで、左方向への刃の進行を抑えて垂直方向に矯正する必要があります。この場合、左の切断面の上方と、右の切断面の下方に、純然たる切断による圧力以上の力が加わりますが、その影響がV型に比べて切断面全体の合計で増減するのかは、実際に計測しなければ断言出来ません。しかし、裏の梳きの御陰で摩擦が軽減される事、左の切断面の下方は横方向に押される力が少ない事から、左側に位置する部分への悪影響はかなり少ないと思われます(それが右へしわ寄せになっていなければ尚良いのですが)。

それでは間違いなく片刃のメリットが活かされる場面とは何でしょうか。恐らく食材の端から切り分けて行く時でしょう。この場合、例えば右端から切るなら切られて分離する切片に掛かる力は、左から押し広げられる力が殆どで、薄ければ薄い切片である程、右に連なる部分からの押し返しによる力は少なくなります。加えて左へ進行する刃を抑える力、つまり切片の左側下方への右向きの力も同様です。一方、切片より左の本体部分には垂直方向から剪断力が掛かる以外、ほぼ外力はありません。切片下方に掛かる右向きの力が少なければ、それだけ反作用で掛かる本体右側上部への力も減少するからです。しかも接触面の摩擦も、裏梳きによって激減した最小限の面積が触れるのみです。これにより、包丁の切断面の左右共に余分な外力が少なくて済み、食材の食感と風味を損なう事が少なくなると考えられます。

ここまで考えてくると、両刃のデメリットが目立つように感じますが、扱い方一つで片刃和包丁に近い効果を得る事が可能です。それには包丁を右に倒し、左の切り刃を食材に対して垂直に位置させ、その状態から切ります。勿論、片刃和包丁と同等の刃角である事は少なく、裏梳きも無いので接触面積は裏梳き部分のみとは比べるべくも在りません。しかし、この操作によって本体に横方向からの力は掛からず、又、平に対して切り刃の角度が在る為、単一平面に対するよりは張り付きが少なくなります。ただ注意点としては、包丁を右に傾ける都合上、刃先の位置や向きが左方に偏位するので、特に不慣れな間は普段よりも左手を切らないように気を付ける必要があります。

ともすれば洋包丁と片刃和包丁の間で中途半端にも見られがちですが、専門性の高い片刃和包丁に対して、汎用性の高い両刃和包丁は、使い方次第で片刃に近い効果を得る事も可能になります。例えば切り刃を広げて鋭角にすれば上記の内容に適し、刃幅が狭く鈍角なら魚介を捌くのに向きます。更に始めの記載通り、均等に切り割る作業に於いては特別な注意も技術も必要無く、ある程度万能に使うには悪くない選択だと思います。洋包丁に追加するなど、和包丁の入門用としても相応しいかも知れません。

切れる角度と厚みの関係

 

研ぎをしていると、幾つか疑問に思う事が出て来ます。その一つが身(刃体)の厚みと刃の角度の関係です。勿論、切る対象との兼ね合いも在って、一概には決めつけられませんが、薄い身に鋭角の刃、特に和包丁で言う所の切り刃があれば極めて鋭い切れ込みが得られます。

それでは、刃物の物理的な耐久力が許す限りに於いて薄い程、良いのかと言えば、そうでは無いと思います。何故なら切る対象が厚く硬い性質の場合や、刃がしなると正確な作業が困難。また食材を綺麗に整った形に切り分けられない等の弊害が出ます。そして刃物を大事に長く使う立場からは、強度と刃持ちを考慮して、やや猶予を持たせた構造の方が良いでしょう。

私が考える薄すぎる刃体は、対象と目される物の切削に於いて作業効率が落ちたり、正確な刃の進行が妨げられる程のしなり・捻れが出る場合です。刃角が鋭角過ぎる場合は、刃体よりも全体への悪影響は顕著ではありませんが、刃持ちに直結する為に作業時間に関わります。洋包丁の小刃の場合は、ブレードが薄くなっていった先の梁構造として、基本的に薄物であるところの洋包丁(特に鎬の無いVグラインド)に剛性を付与する働きが期待出来るので、例えば極薄のハマグリ刃で刃幅の半ばまで刷り上げるのは一般的には非推奨です。角を丸めたやや鋭角の小刃が妥当でしょう。

対して、厚すぎる刃体は、対象に切り込めなかったり、切る前に割れてしまう様な場合です。刃角に於いては、切れ込みが重く、対象に圧力が掛かり過ぎて切り口が変形する場合などです。どちらも厚みと刃幅に余裕があれば、肉取り・研ぎ抜きと言われる鋭角に研ぎ直しにより改善出来ます。その点から見れば、洋包丁よりも和包丁の方が明確な平と切り刃がある分、容易に且つ幅広く対応出来ます。

以上の点から、厚すぎと薄すぎの大まかな姿が見えてきました。理屈の上では、その両極の間であれば、お好みでとなるのでしょうが、研ぎをしていく上では多少、黄金律と言うか最適値の様な所も気になります。とは言え切り刃だけでもベタ(角度違い)やハマグリ(曲率・カーブの頂点の位置違い)に糸引きや段刃(+糸引き)・刃先ハマグリ(+糸引き)など、枚挙に暇がありません。そこで、私が判断材料の一つとしている極めて条件を限定した具体例として、刃先の角度(種類は問わず)が紙(一枚から二、三枚程度)に数㎜切り込む間の刃の通り(此処では任意の角度で保持した刃を対象にスライドせず押しつける時の刃の進行度合い)を説明します。

標準的な包丁ではまず、紙(新聞など)の端に刃線が直交する状態から寝かせていき、直圧を掛け、紙が逃げたり曲がったりせず刃が通るかを見ます。もし寝かせず(0度)通れば、それは必要以上の鋭さです。10度から20度でもまだ余分かも知れません。30度から45度で通れば充分でしょう。この様な紙への刃通りでは和食で言われる掛かり・走り・抜けは判断出来ませんが、少なくとも切れ味の最初の段階で刃先が切り進めるか否かは分かります。ここをクリアして初めて厚みのある物(折り畳んだり厚く巻いた新聞など)に対しての切り抜けを追求出来ます。

 

(参考までに関連するチェック方として、同じくスライド無しでの直圧ですが、やや刃の先か元を上げます。ギロチンの刃が斜めのまま直進するのを再現する要領で切り込みを確認します。此方の方が紙からの抵抗を受けにくく、楽に切り込める筈で、先のテストで不合格でも今度はパスする事も有るでしょう。勿論、その際の「斜め」が10~30度くらいのどの範囲かで、切れのレベルを測ります。経験上、30度を大きく上回っても切れ込みはそれに比例する程では無いので、その範囲内での比較が適当かと思われます。

それでも駄目なら二種類の要素を加えて「斜め+斜め」で当たれば更に優しいテストになり、最後はそこにストロークを長く取ったスライドを付け足すと、最大限の切れ味を引き出せます(一応、ストロークの長短でチェック可能)。此処に及んで未だ切れない様では殆どの用を足す事は出来ないと思われますが、目的の仕事に必要なレベルの切れがどのテストをパスすれば得られるのかを把握しておく必要があります。)

 

通常私の場合は、ほぼベタ研ぎ+刃先ハマグリで研いでいき、此処までのテストで刃通り・切り抜けを確認した後、モバイル顕微鏡で研ぎ目と刃先の整列も確認。問題無ければ研ぎ終了とし、依頼主に上記画像添付の上で作業完了メールをお送りしています。

 

始まりは理由が知りたくて

 

そもそも研究を始める1番の目的は、以前からの疑問の答えが知りたかった事でした。天然砥石、特により硬くて細かい砥石で研ぐと、良く切れるのは当然として炭素鋼も、ステンレスまでも「長く」切れるのです。

自分の人造砥石の経験は知れていますが、恐らく鋭利な刃先を作る能力は殆どの天然砥石を凌駕する物も出て来ていると思います。つまりそれぞれの角度毎に最も薄く研ぎ上げる能力は安定性も含めて人造に分がありそうです。

ではどうして天然砥石を使っているかと云えば、大きくは次の三点です。まず切れ味が良い。これは絶対的に鋭利な研ぎ上がりを目指した物で無く、切削対象たる木材・魚・肉・野菜その他殆どを、単一(若しくは2~3種)の仕上がり状態で賄える汎用性です。人造の極鋭利な刃先は細かく、対象によっては滑って切り進みにくい、或いは接触面が互いに平滑過ぎ、摩擦が大きく動きにくい傾向もあり得ます。そこで刃先や研ぎ肌の仕上げを状況に応じて使い分ける必要が生じる訳ですが、天然仕上げでは殆ど滑る場面は出てこず、ゴムや樹脂に対しても接触面の吸着が少なかった経験があります。勿論、刃物や対象物、使い方で違いはありますが、巣板・合砥・鏡面砥石の内、どの仕上げてあっても、多少の差はあれど上記のメリットが見込めます。

二つ目は錆びに強くなる点です。普通に水回りで使用していても錆や変色が少なくて済みます。これは調理に於いて水のみならず、食材の成分が付着しても同様で、更には保管中でも箱の中で埃や結露が無ければ、人造の2~3倍は錆が出ずにいてくれます。但し細かい仕上げである程効果が高いので、錆びに対しては鏡面一択です。つまり研いだ際の傷が細かい程、そして浅い程錆びにくさに繋がると考えられ、この点で細かい筈の高番手の人造でも天然の1.5~2倍相当の番手で無いと比肩出来ないのは傷が深いのが原因ではと考えています。

そして三つ目が1番有り難く又、不思議に感じている点で長切れです。これまた炭素鋼であろうがステンレスであろうが、切れの持続が少なくても3~5割増しになるようです。特に効果を実感し易いのがステンレスの低級から中級品で、具体的には420J2相当や8Aクラスですが、これらを鏡面に成る砥石まで仕上げると、ひとクラス上の切れと保ちが得られます。例えば8A(カミソリ砥で鏡面仕上げ)がV金10号(巣板や通常の合砥仕上げ)と同等というようにです。之については今まで、昔から云われる天然砥石の刃先硬化作用(熱くなるまで要摩擦)とか、鋼材の弱い部分を優先的に削り落とすのでは。又、天然砥石に含まれる硫化物による硫酸・堆積した微生物由来の硝酸の類いによる化学変化。などが推測されてきたようです。

自分としては、研ぐ事で摩擦熱が上がり、水に触れる時点で焼きを入れ直している。という意見以外はどれもがあり得ると考えてきました。しかし、砥石の成分が酸性・アルカリ性どちらかを調べたり、塩酸の様なものに刃物を漬けたり(加えて加熱も)した人も居られたものの、今ひとつはっきりしなかった印象から、可能性が最も高いのは研磨の仕方と判断してきました。しかし、天然砥石を使っていると、ステンレスでは起こらない反応が炭素鋼では起こっているのに気づきました。それは砥石の硬化です。昔から砥石の様子が使う内に変化すれば「層代わり」の一言で片付けられていたようですが、之まで使った砥石は柔らかくなった2~3の例外を除き、全て硬くなりました。これは使っていなくても違う砥石から出た研ぎ汁を数回塗布するだけで起こり、水やステンレスの研ぎ汁では起こりません。と言う事は、砥石の成分が鉄を含んだ水分により硬化するなら反対に刃物も砥石の成分を含んだ水で硬化してもおかしくは無い事になります。ただ、もう一押しの要素は、「熱」ではなく研磨その物では無いでしょうか。塗装する前はサンドブラストなどで金属表面を一皮剥きますが、この状態は励起している状態らしいので、研磨中は似たような環境が整っており、反応が進みやすい・或いは表面に定着しやすいのかも知れません。勿論、低いとは云え常温の水と砥石よりは摩擦熱程度でも無いよりは良いのでしょう。

ステンレスでは酸化皮膜が反応を阻害する筈だから、化学反応は無く研磨による物理的な性状の変化だと考えていましたが、上の推測に従えば、皮膜が出来る暇を与えず化学的に処理されている可能性も考慮する必要が出て来ます。炭素鋼に比べれば、割合は少ないでしょうが精密に微量な成分まで検査可能ならば、炭素鋼・ステンレスどちらも根本原因が分かり、且つ性能の上乗せが実証出来ると思います。これまでの推測が正しいのか、又感じているメリットがデータで現れるのか、天然砥石に惚れ込んだ者としては、研ぎ上げた形状の正確さや合目的的な形状と共に大いに関心があります。

 

説明文 8               (研ぎ屋むらかみHPより)

共名倉について

 元々は名倉砥石という砥石があり、単体で使用されていたものの、他の砥石に摺り合わせ、研ぎの補助として砥泥を出す用途にも使われ出した為に代名詞的な呼称になったと思われる。(その主たる目的以外に、砥石本体の目詰まりを取る・目起こしをする・平面維持を助ける働きもある)同じ用途でそれ以外の砥石が使われる場合は共名倉と呼ばれる。一般的には仕上げ砥たる巣板・合砥に対して、同系統の砥石が使われる状況を指す。そもそも補助を必要とする状況とは、大きく分けて以下の二つの場合だろう。一つは研磨力の向上を企図したもの、もう一つは傷を消す為のものである。

 前者は文字通り、研磨力の劣る砥石に研磨力の期待できる共名倉を摺り合わせて、作業効率を高める為の使い方である。この場合、次々に砥泥が出て新しい砥面で研げる柔らかい砥石よりも硬めの砥石、そして砥粒の目が立っている砥石よりは寝ている砥石にこそ使われるのが順当である。その為、これに合わせる共名倉には逆に、余り硬くなく、砥粒の目が立っているものが望ましい(仕上がりを問わず、研磨力優先なら硬い共名倉を使う事もあり得る)。

 後者を更に分類すると、傷(研ぎ傷・研磨痕)を消す為のものと、傷が入るのを防止する為のものがある。傷を消す使用法は、硬軟どちらの砥石に対してもあり得るものの、共名倉としては兎に角より細かく、より柔らかく、尚且つ砥粒の目は適度に立っているものが目的に適う。余りにソフトな当たりでは、前段階の傷を消せない為である。

 傷の防止とは、特に硬口で目の立っている砥石の場合は地金を引く(軟鉄部分に引っ掻き傷を作る)ことが多い為、予め研磨の潤滑材として、研ぎ汁(水+砥石から剥離した砥粒+研ぎ下ろされたれた金属粒子)が出る前から砥面上の水膜にコロイド状に砥粒を分散させておくものである。

単にベアリングとクッションの役割だけで良ければ、砥粒は大きく、柔らかく、目の立っていないものが最適である。しかし求める研ぎ肌の仕上がりや刃先の切れ味によっては、潤滑性能とのトレードオフにはなるが、砥粒の性質を硬く、細かく、目も立っている方向に変更する必要が出てくる。つまり傷を消す事と傷を防止する事はかなりの部分、二律背反の関係にある訳だ。しかし使用者の選択一つで、同じ砥石でも共名倉の違いにより切れ味は勿論研ぎ肌も違ってくる。地金・刃金双方の景色が透明感のある明るいものから、陰影に富んだ渋い仕上がりまで、様々な表情を見せる。正しく、天然砥石の対応出来る幅を広げ、刃物の性能や美観までもアレンジしてくれるものである。

やや特殊な例としては、剃刀の最終仕上げで使う砥石は、名倉の精粗で三段階の研ぎをそれ一つで済ませる事があるという。これは超堅口の砥石一つに三役を担わせる、つまりこれまでに述べてきたほぼ全ての名倉の役割を総動員する使用法と言え、その為かつては土台たる砥石は兎に角硬くて細かければ、後は名倉で何とかなるとまで考えられていた節もある。本来は砥石そのものも吟味されるべきであろうが、確かに究極の名倉活用法ではある。もし本当にそれが出来ていたのであれば、その名倉が途轍もなく優秀であった証左となるが、現在そのような名倉砥石は稀少であり、検証するのも簡単では無くなっているようだ。

注)

その後、知り合った方から厚意で頂いた黒名倉は性能的に満足出来る物で、仕事内容により、使わせて頂こうと考えています。又、同じく(別の知人から)頂いた三河のボタンは普通に研げるサイズであったため、泥を出す用途では使っていません。

説明文 7               (研ぎ屋むらかみHPより)

 使用砥石(天然仕上げ砥石)について

 私が主に使用している砥石は殆どが砥取家製の巣板・戸前・合いさの他、カミソリ砥、及びそれに準じる硬度・粒度の物として、千枚・八枚系を標準以上の仕上げ、又は鏡面近く仕上げる場合の下研ぎ用としても用意しています。

 カミソリ砥クラス(大谷山戸前浅黄・御廟山戸前いきむらさき等)は、美観や錆対策としての鏡面仕上げもさることながら、刃先の切れ味と長切れに大いに貢献してくれます。特にステンレス鋼は、炭素鋼の刃に対して鋭さ・食い付き・長切れで、不満が出易いので必須の物だと感じています。

 通常良く使っている砥石達です。(断りが無い限り丸尾山産です)

 敷内曇り各種(硬さ、細かさや切れ味・刃金と地金の仕上がりのムラ等それぞれ違う物)

  白巣板各種(白巣板巣なし・蓮華・黒蓮華がかった物等)

  卵色巣板各種(紅葉の他は敷の緑色系統細かさ違い、黒づけ坊主っぽい物・天上の堅口等、硬めで平面を出し易い手の平サイズ)

  千枚・八枚

  大谷山戸前浅黄(硬さ・細かさ・仕上がり違い。ただ相性次第の事もあり)

  御廟山戸前(いきむらさき・色物等)

  その他、八ノ尾の八枚らしき物、水木原の卵色巣板らしき物、山不明の鏡面仕上げ用レーザー型各種等

  共名倉について

  これまでに身近な所で手に入れた白・黒名倉があまり使い勝手や仕上がりが良くなかった為、共名倉を使用しています。良くなかった点である、過大なクッション性・研ぎ肌の不均一性・刃先形成の不完全さがほぼ解消され、満足いく仕上がり・操作性・作業効率に改善されました。特に重宝しているのは、使用砥石や研ぐ刃物、狙いの仕上がりにもよりますが、丸尾山の敷内曇り(蓮華混じり)・八枚・大上二種(墨流し模様入り)です。但し、これらは特に切り刃全面を鏡面にする時に使用するもので、そうで無い限り殆ど必要ありません。他には巣板の研磨力を増強する為に一本松の戸前二種を共名倉に使用する場合があります。

基本的にステンレスはカミソリ砥クラスの仕上げとしています。炭素鋼(合わせ)は相性次第で、巣板でも十分な目の細かさ・切れ味に仕上がれば合格。十分でなければ千枚・八枚クラス、又はカミソリ砥クラスで刃金の調整(刃先だけでは無い)をしています。

説明文 6               (研ぎ屋むらかみHPより)

    天然砥石と鋼材の相性

  現代では純炭素鋼・特殊鋼・ステンレス鋼が主な刃物の材料となっている。純炭素鋼はその名の通り、鉄に炭素が加わった物、特殊鋼はそれにタングステンやマンガン、コバルトなどを加えて対摩耗性や靱性を上げた物、ステンレスは更にクロームやニッケル、モリブデンなどを加えて耐腐食性を上げた物である。

  上記の他に、製造法の分類で、粉末冶金法により製造された物がそれぞれにある。代表格は、粉末ハイス(粉末ハイスピードツールスチール)と呼ばれる粉末特殊鋼と粉末ステンレスで、いずれも製造段階で、素材が均一に分散されるようにパウダー状態で撹拌された後、型の中で高温焼成して出来上がる。通常の製造法(液状での撹拌)に対して組織の緻密さ・ムラの無さで切れ味・刃持ち共に向上している。又、ステンレスの中には炭素の量をこれまでの常識の1%前後以下から、鋳鉄に分類されるような3%前後にまで増量した物まで存在する。炭化物が巨大になりにくい特徴を生かしてこれまでに無い高炭素含有量から高硬度を実現し、ロックウェル硬度で65度以上の実用硬度を可能としている。

 さて、天然砥石が使われ出して、最も長い付き合いである処の刃物用鋼材は純炭素鋼なので、相性が良いのも当然だろう。穿ってみれば、炭素鋼に相応しい砥石が探査・珍重されて来た歴史そのものが日本の研ぎの文化・歴史とも言える。異常に硬度を高く設定しない限りは、粗砥・中砥・仕上げ砥まで問題無く対応出来る砥石が多く、肌理の細かい研ぎ肌と、精細な刃先となりやすい。 焼き入れ・焼き戻し・鍛造の各工程の成否が即、仕上がりに直結し、成功すれば十分な実用硬度とそれに釣り合う粘りを両立させ、その強度からは想像が出来ない研ぎやすさを備える。硬すぎ・柔すぎ・荒すぎという明らかな不良が出ない限りは、最も天然砥石に適した鋼材と言える。

一般的な例では、日立の白紙系統がある。(他に不純物がやや多い黄紙系統もある。但しこの二種は水焼き入れ推奨で難易度が高い。)

  特殊鋼と呼ぶべき鋼材は同じく日立の青紙系統やハイス鋼(高速度工具鋼)等があるが、これらは耐摩耗性や靱性が強化されているだけで無く、添加されている成分が結合して大きな炭化物が出来やすい特性がある。その為、砥石の研磨力が不足しがちになったり、研ぎ肌の肌理が粗くなりやすい。勿論、製造過程によっても大きく差が出る部分であり、それぞれについて改善策を講じれば、マイナスの要素の軽減を図れるのだが、状態が良くない仕上がりの例としては以下の症状が現れる。

  1:刃先の粘りが強すぎて、返り(刃返り・バリ)が取れにくい

  2:硬く、巨大な炭化物が広範囲に研ぎ面に出て砥石に当たる為、下りが悪くなる(難研削性)

  3:組織が荒く、研ぎ肌や刃先が精細に研ぎ上がらない(刃の掛かりが甘い)

 上記三項目は、全ての鋼材に起こりうる忌避すべき状態であるが、添加物の種類・量共に多ければ多い程、その増加傾向はより顕著となる。つまり、純炭素鋼-特殊鋼-ステンレスの順で研ぎに対する悪影響が少ないと言える。但し、これらの添加物は焼き入れ性にはプラスに働く。即ち熱処理における失敗が起きにくくなる。青紙は油焼き入れも可能で、ステンレスに至っては、1000度少々に加熱した後、空気中に放置するだけで焼きが入る物も多い。

そしてステンレスの研ぎに関する特徴として、よく言われる代表的なものは砥石の上で滑る・返りが取れなくて刃先が出にくい等である。恐らく一般に出回る鋼材の中で、これまでに挙げたマイナスの要素が際立って体験しやすいものがステンレスだったのだと思われる。純炭素鋼と特殊鋼の差に比べて言及される度合いが極端に多いように見受けられる。確かに高硬度であれば尚更、そうで無くとも耐摩耗性や靱性の高さという難切削の要因があれば、全ての砥石に対して困難な相手と見做されるだろう。ましてや配合される研磨剤で強引に削り落とせる人造砥石とは異なる天然砥石ともなれば言うまでも無い。

 しかし、研削では控えめな性能と評価されうる天然砥石でも、こと研磨の段階に於いては、その性能を最大限に発揮できる。適度な研磨力により返りが出にくく、又砥粒の自己破砕性により出た返りも小さく薄く加工されていく事で、刃先に対する負担が少なく除去できるメリットがある。それは、金属部品に付いている大きく厚いバリを強引に引きちぎったり、何度も折り曲げて破断させる様子を想像すれば容易に理解できると思う。

 つまり、天然砥石を使う価値は、純炭素鋼に対して多くの面で相性が良いだけでは無い。殆どの鋼材に対して特に最終仕上げの段階で、特有のメリットを理解して合目的的に使用すれば、他では得られない操作性・仕上がりを自ずから可能にする所にある。

  参考までに、粉末と非粉末の素材に対する相性であるが、巨大炭化物が表面の大きな面積で当たらなくなる為、研磨に於いては研ぎやすくなる。また刃先や研ぎ肌も均一にになりやすい点から、粉末鋼の方が相性は良い事になる。卑近な例として個人的体験では、アメリカ製ナイフのハイス鋼は鋭利な刃先・均一な研ぎ肌は困難であったが、HAP40の鉋の刃先はどちらも可能であった。刃物の種類や構造が異なるものの、それを差し引いても格段の差を感じる事ができた。

 但し、粉末冶金の特性を生かす観点から大量の炭素を添加した物は、相性を合わせるのは容易でないかも知れない。自身の体験でも、ロックウェル硬度67.3程度のカウリXの自作刃物では、未だ完全な刃先・均一な研ぎ肌には至っていない。

  最後に具体的なステンレスの例を挙げておく。V金10号とV金2号のコアレス、V金10号ダマスカス、DPコバルト、8A,モリブデンバナジウム、100均の包丁などの鋼材全てで、指先に摘まんだ毛髪を切断できる切れ味にすることは可能だった。しかし例示した鋼材の内、後半になるほどカミソリ砥の必要性が高くなった。逆に前半では、巣板や合砥のレベルでも可能であり、これは炭素鋼に近い鋭利さである。恐らくは材料そのものの性能・品質と、製造工程での手の掛け方の違いもあろうが、使用に際しての大きな差は切れの滑らかさだ。同じ毛髪を切る段でも、刃先の掛かりと入っていく時の毛髪の振動が大きく異なる。しかし実際はそれよりも圧倒的に長切れと外力に対する強さの方が印象に残るだろう。一見異なる性能に見えるこれらは基本的な組織の細かさと、それを生かす適切な熱処理の賜物と言える。つまり切れ味追求の観点からは、硬度が低く組織の荒い後半よりも、硬度は高いが組織の細かい前半の方が砥石に対する要求が低いと言える。低硬度・粗雑な組織であるほど、高硬度・緻密な砥石でないと満足な性能を引き出せなかった。恐らく粘りが過大で粒子の大きな組織を、鋭利な角度で一直線上に並べるには、変形しない硬い砥面と大きすぎない研磨力、そして鋼材に転写されるべき細密な粒度が不可欠なのだろう。これらの事から、例え比較的、硬度が高く強靱であっても、緻密な組織の鋼材の刃物の方がより天然砥石には相性が良いと思われる。少なくとも、人造砥石の様に精粗・硬軟、あらゆる鋼材に均一な研ぎ目を付ける事は得意では無いからだ。飽くまでも鋼材の持つ特徴を引き出す方向性が、天然砥石を使用する上での勘所となる。

説明文 5               (研ぎ屋むらかみHPより)

天然仕上げ砥石の特徴について

 1:切れ味を引き出しやすい

   *研磨力が適度な為、刃先に「返り」(刃返り・バリ)が大きく出にくく、研ぎ傷が消し易い。

   *研磨が進むに従い、砥粒が微細になるため、仕上がりの番手を調節出来る。

 2:永切れ効果

   *鋼材の組織中の軟質の部分を優先的に研ぎ下ろす為、刃金表面を特に硬質の部分で

     揃える事になり、実質的に対摩耗性が上がる。又、天然成分による緩やかな表面的な

     腐食で硬度変化の可能性もある。

 3:防錆性能

   *研磨剤としての砥粒の硬度が低く、鈍角な形状の為、鋼材に深い傷を付けにくい。即ち表

     面積が大きくならず、錆の発生が抑えられる。又、鏡面に近づく程錆にくくなって行く。

 4:材料それぞれの研ぎ肌を表現できる

  *刃金(鋼鉄)と地金(軟鉄)で構成されている刃物であれば、その硬度差により、違った仕上

    がりの研ぎ肌となって現れる。人造砥石では、一律の研磨状態となるところ、素材の違いは

    勿論、同じ地金の中でも刃金由来の炭素の移動による景色の違いが現れたりもする。

    材料二種の硬度による違いだけでなく、刃金単体であっても「鋼材の組成、鍛造の程度焼

    き入れ・焼き戻しの違い」による「硬さ・粘り・組織の細かさ」など、刃物の個性・バラツキよっ

    ても研ぎ上がりが変わってくる。それは一つの天然砥石で全ての刃物を均一に仕上げられ

    ないと言う事でもあるが、反面、個々の刃物に最適の砥石を探し出してやれる可能性がある

    事も意味する。

    研ぎ肌が綺麗である事は、只美観の為のみならず、総合的に刃物の刃先・切り刃がその鋼

    材なりの良い状態(研ぎ傷が消え、精細な刃先形成による鋭利な切れ味。光の反射にムラ

    が無く、表面積の小さい錆びにくい状態。)を実現できた指標ともなる。

    逆から見れば、過去の経験から特定の鋼材に相性が良いと判断できる砥石群を用いて、同

    一の鋼材の刃物を研いだにも関わらず、研ぎ上がりが違ったり、上手く研げなかったりする

    場合、今度は刃物の素性や出来を判断する材料にもなり得ると言える。

説明文 4               (研ぎ屋むらかみHPより)

刃付けと切れ味について

  物が切れると言う現象については未だ解明されていない部分が有るかもしれないが、一般的に切れ味と言われている手応え・感触については、影響する要素は大きく分けて二つだろう。一つは刃物の厚み、もう一つは刃の角度だ。

 厚みは対象物を削る場合は未だしも、切断する際にはまともに抵抗となる。端的に言えば、強度的な問題が無ければ刃厚は薄ければ薄いほど良く切れる。しかし実際は、強度や精度、果ては重量までも必要とされ、様々な厚みの刃物がその要求に基づいて制作されている。

 刃の角度についてもほぼ同様で、鋭角であるほど良く切れるが、強度が反比例する為、あまり極端な角度の物は特殊なものに限られている。

 上記は刃物一般についての傾向だが、鉋や鑿など刃渡り全域が終始対象に接触し続けるものと違い、むしろ対象より長い場合もある刃渡りにおいて、対象と接触する部分が移動しつつ切って行く刃物では、その際の刃の厚みや角度の変化によっても大きく切れ味を左右されることになる。

 例えば包丁では、厚みは目的の作業に必要とされる最低限の強度が確保されていて、角度はその作業時間内に切れ味が低下し過ぎない範囲で鋭角であれば切れ味に不足は無い理屈だ。

ところが実際に刃をスライドさせつつ切り込んで行くとなると、対象に接するのが後になる部分ほど厚みや角度が小さくなければ楽には進んで行かないもので、少なくとも後の方が厚い・鈍角では話にならない。現実には、どちらか一方だけでも条件を満たす事を目指さざるを得ない。

 ところが、出荷前の刃付けの段階で峰から刃先・刃元から切っ先にかけて正確にテーパー状に厚みが抜けている仕上がりと共に、刃先角度がその鋼材の特性と刃物の使用目的に応じた角度で研がれている事は稀である。刃角は店頭に並ぶまでの破損防止と不注意なユーザー側の刃欠け対応で鈍角になっているのかも知れないが、厚みの方はグラインダーなどで刃元と切っ先付近が削り過ぎている状態が多く見受けられる。ユーザーが普通に研いでいたのでは刃元は長期間砥石に当たらず、調理の段階では食材を切りかけてすぐに中央の厚い所でブレーキが掛かってしまう。そして強度が落ちるほど薄くなった切っ先手前の切り刃とは逆に、すぐ後ろの峰の厚さが残り過ぎている事もブレーキになる。

このように、作業内容に見合った包丁の研ぎとなると、単に刃先の鋭利さのみならず、刃全体の厚みの変化や切り刃の肉の取り方、刃先の角度の繫がりが問題無いかをまず確認し、適宜目的に応じた対処が必要になってくる。(あまりに切っ先まで厚い場合は平をテーパー状に薄くしたり、刃の角度を先に行くほど極端に鋭角にしなければならなくなる)

 これらを踏まえると、魚肉を引き切る刺身包丁や出刃包丁、牛肉・鶏肉を引き切る事が多い牛刀は刃元から切っ先まで厚みや刃先の角度が緩やかに減少して行くように、対して薄刃包丁は野菜を押し切り(前方へスライドしながら切り下げる)使い方が多い為、あまり厚みや角度に変化が付かない研ぎ方が妥当と言えるだろう。

説明文 3               (研ぎ屋むらかみHPより)

ブレードの角度と刃の角度(包丁・ナイフについて)

  1.製造段階では、普通はフラットグラインドと呼ばれる刃先まで平坦に研削された物・コンベッ  クスグラインドと呼ばれる外に膨らんだカーブで研削された物・ホローグラインドと呼ばれる内側に抉れたカーブで、しかし先はやや厚みを持たせて研削された物が代表的である。(西洋剃刀はコンケーブというホローよりも薄く、先まで厚みが増えない研削である)

  2.和包丁の場合、表は平から先は大抵がベタ研ぎと呼ばれるフラットグラインドか或いは蛤刃と呼ばれるコンベックスグラインドである。しかも裏は裏梳き等と呼ばれる言わばホローグラインドになっている。これにより、表はある程度の強度を確保しつつ、同時に裏は切る対象が張り付くのを防ぐ構造になっている。(片刃構造)

  3.洋包丁の場合は、ブレードの背から刃先まで両側が均等なフラットグラインドの物が基本となる。しかし製造メーカーにより、左右の研削角や後述する小刃の角度を非対称に設定されている物もある。(両刃構造ながら、利き腕の側の刃付けが鈍角である方が、対象を削ぐように切る場合に抵抗を受けにくい。又、その場合切断するラインが利き腕側にズレにくい)更に、和包丁的に平からしのぎにかけてのデザインが取り入れられている物もある。

  4.ブレード本体の構造上の角度に対して、対象に切り込む刃先の角度は、大抵の場合、僅かに或いは遙かに大きく設計されている。大まかに言えば二段階の刃付けになっている訳だがこれは、切る対象に対して刃先の強度に余裕の有る場合と、そうでない場合でその二段双方の比率が違ってくる。

 4.1.刃先の強度が必要な場合、その組み合わせは本体鈍角×刃先鈍角であり、反対に不必要な場合は本体鋭角×刃先鋭角である。現実にはブレードの厚みも加わって、その間にいくつもの組み合わせが考えられる。例えば、鋭い切れ味は必要だが、外力に対する耐久性と耐摩耗性を必要とする場合、鋭角の本体角と鈍角の刃先角の組み合わせが考えられる。

 4.2.しかし、角度以外にも刃先に与える影響が大きい物として、二段目の研削面の幅の大小がある。これには糸引きと言われる、光を当てての確認が必要な程ごく狭い幅の物から、段刃と言われるかなり大きい物まで目的により使い分けられている。当然幅が狭いほど抵抗なく切り進むが、その分強度や耐摩耗性には劣る事になる。つまり、二段目の刃を付ける場合に限ってみても、広く鋭角の刃を付けるか、狭く鈍角の刃を付けるか、目的によって選択の余地があることになる。(洋包丁やナイフの二段目に付ける刃については、小刃と呼ばれる事が多い)

 4.3.糸刃については困難かも知れないが、段刃にはその段を無くし、蛤刃に仕上げるものも含まれるだろう。単に一段目と二段目のつなぎ目を丸めたものから、刃先まで無段階に緩やかカーブを描くものまで様々である。(欠け防止や長切れ目的で、段刃や蛤刃に更に糸引きを加える事もある)

  5.一段目の刃付けのままフラット又はそれに近い刃付けで使用されるのは、一部の人の和包丁や、大工・木工関係に限られてきている。現実には極限の切れ味や切削対象の精度を求めるので無ければ、製造段階は言うに及ばず使用者に於いても二段階・三段階の刃付けがなされている訳だ。

説明文 2               (研ぎ屋むらかみHPより)

   刃金の状態とその要因(主として炭素鋼について)

 刃物の性能の要となるのは鋼鉄から出来ている刃金の性能である。つまりこの炭素鋼がどういう状態に熱処理されているかで大きく特性が異なる。例えば硬度であるが、基本的に炭素量が多ければ多いほど硬くなるが、3%前後になってくると鋳鉄の範疇になり、粉末冶金でも無い限り、脆さが顕著になる。やはり1%を大きく超えない辺りが常識的な範囲となる。

 更に焼き入れの適正温度にも妥当な範囲があり、低すぎる温度では硬さは出ないものの、高すぎる温度からの焼き入れでは脆さや、却って柔らかくなってしまう事もある。又、刃物の厚さや形状によって、適正範囲内でも何処を選択するのが最適かの判断は経験が必要になるという。

 その鋼材なりの硬度が出る焼き入れが成功したとしても、そのままでは実用上、圧力や衝撃に対して耐久性に問題が出易いものである。そこで粘りを加える為の焼き戻しが必要になってくる。焼き鈍しは加工性を上げる為に硬度を下げたり、組織の炭化物が大きく育つのを改善するもので、これとは異なる。飽くまでも実用範囲における硬度を保持しつつ、欠けや折れを防止するもので、設定の硬度を下回っては意味が無くなる。

 この方法は、古来からの焼き入れ直後にそのまま炉で低温域内で再加熱後水冷する方法や、現在主流の温めた油に漬けておく方法がよく知られている。炉で温めるには基準の見極めが必要であり、油に漬けるには設定温度と保持時間の選択に掛かってくる。最適な解を見つけるのはどちらも簡単では無い。

 硬度と粘りだけでは刃物を語れないのは、やはりその鋭利さ故に求められる刃先性能が極めて

レベルの高いものになるからだろう。これがある程度の厚さを伴う先端であれば、剛性が助けてくれるし、薄くても硬度が必要ないなら、粘弾性の方に逃げられる所である。

 狭い面積に比較的大きな圧力や摩擦が掛かる刃物には、金属組織の状態が切るという目的に適しているかどうかも関わってくる。炭素鋼とは鉄と炭素が結びついた状態ではあるが、何処を取っても全てが均一な大きさや並び方をしているとは限らない。寧ろ、炭素が結びついた炭化物が大きく成りすぎたり、不均一に繋がり・分散していることもある。その例が、拡大した時に樹状や網状に見える組織である。これが即、質が悪いわけでは無いものの、傾向としてはやはり微細な球状の組織が均一に分布している方が鋭利な刃先の形成と耐久性には有利に働くだろう。

 これには焼き入れ段階で熱処理が適正であるだけで無く、以下の点でも注意が必要となる。

鍛接時の温度を可能な限り低く抑える。又、鍛造時、回数ごとに加熱温度を下げていく事。炉での保持時間を長くし過ぎない。冷間での鍛造を必要なだけ行う事など。金属試験では温度管理と打撃による外力の双方で球状化が認められている様だが、それを鍛冶仕事の中で両立出来れば出来上がった刃物の物性が適正、或いは安定しているのはある意味当然と言える。

  (鍛接温度が高すぎたり、炉での保持が長すぎると炭化物が大きく育つ。又、刃付けや刃研ぎ で温度が上がりすぎると焼き戻りで硬度低下や欠けが出るリスクが高まる。)

 注:此処では、「ロックウェル『かたさ』計」などで計測される金属の所謂『かたさ』を硬度と表記しています